Popular Posts

Tuesday 1 November 2016

Hybrid Transformer ZVS/ZCS DC–DC Converter With Optimized Magnetics and Improved Power Devices Utilization for Photovoltaic Module Applications

Abstract—
This paper presents a nonisolated, high boost ratio dc–dc converter with the application for photovoltaic (PV) modules. The proposed converter utilizes a hybrid transformer to incorporate the resonant operation mode into a traditional high boost ratio active-clamp coupled-inductor pulse-width-modulation dc– dc converter, achieving zero-voltage-switching (ZVS) turn-on of active switches and zero-current-switching turn-off of diodes. As a result of the inductive and capacitive energy being transferred simultaneously within the whole switching period, power device utilization (PDU) is improved and magnetic utilization (MU) is op-timized. The improved PDU allows reduction of the silicon area required to realize the power devices of the converter. The optimized MU reduces the dc-bias of magnetizing current in the magnetic core, leading to smaller sized magnetics. Since the magnetizing current has low dc-bias, the ripple magnetizing current can be utilized to assist ZVS of main switch, while maintaining low root-mean-square (RMS) conduction loss. The voltage stresses on the active switches and diodes are maintained at a low level and are independent of the wide changing PV voltages as a result of the resonant capacitor in series in the energy transfer loop. The experimental results based on 250 W prototype circuit show 97.7% peak efficiency and system CEC efficiencies greater than 96.7% over 20 to 45 V input voltages. Due to the high efficiency over wide power range, the ability to operate with a wide variable input voltage and compact size, the proposed converter is an attractive design for PV module applications.





No comments:

Post a Comment