Abstract—
Based on Cuk converter, a novel commutation torque ripple reduction strategy is proposed for brushless DC motor (BLDCM) in this paper. Output modes (buck-boost mode and boost mode) of the Cuk converter during commutation period and normal conduction period are altered by designing a mode selection circuit, which can reduce commutation torque ripple over the entire speed range. During the commutation period, Cuk converter operates in the boost mode to step up the input voltage of three-phase bridge inverter and then meet the voltage demand of commutation period, such that the commutation torque ripple can be reduced by keeping the non-commutated current steady. In order to improve the utilization rate of the converter, during the normal conduction period, Cuk converter operates in the buck-boost mode and the input voltage of three-phase bridge inverter is regulated by adopting PAM (Pulse Amplitude Modulation) method without the inverter PWM chopping, which can reduce the voltage spike damage to the motor windings caused by turn-on/off of MOSFET in the inverter and simplify the program of modulation method further. The experimental results verify the correctness of the theory and the effectiveness of the proposed approach.
No comments:
Post a Comment