Abstract—
This paper proposes a high-performance high-frequency-link (HFL) single-phase inverter. It offers bidirectional two-stage galvanic isolation power conversion without bulky dc link capacitors. An active clamper circuit and corresponding modulation strategy is developed to enable the proposed HFL rectifier to operate in soft-switching modes and be free of voltage spikes during device commutation. A succinct circuit model and high-performance plug-in repetitive control scheme are also developed to enable it to equally function as a high-performance conventional pulse width modulation (PWM) inverter. The experiment results on a 20-kHz HFL inverter prototype demonstrate the efficacy of the soft-switching HFL inverter and its highly promising control performance. The proposed HFL inverter offers a high-reliability, high-efficiency, high-power-density, and high-performance power conversion solution to extensive applications.
This paper proposes a high-performance high-frequency-link (HFL) single-phase inverter. It offers bidirectional two-stage galvanic isolation power conversion without bulky dc link capacitors. An active clamper circuit and corresponding modulation strategy is developed to enable the proposed HFL rectifier to operate in soft-switching modes and be free of voltage spikes during device commutation. A succinct circuit model and high-performance plug-in repetitive control scheme are also developed to enable it to equally function as a high-performance conventional pulse width modulation (PWM) inverter. The experiment results on a 20-kHz HFL inverter prototype demonstrate the efficacy of the soft-switching HFL inverter and its highly promising control performance. The proposed HFL inverter offers a high-reliability, high-efficiency, high-power-density, and high-performance power conversion solution to extensive applications.
No comments:
Post a Comment